PH1

Question		n	Marking details	Marks Available	
1	(a)		Use of cos 40° [or sin 50°] (1) [or by impl.] $\left(\frac{200}{\cos 40}\right) (1) = 260 \text{ N [subst or ans]}$	2	
	(b)	(i) (ii)	Work done = Force × distance (1) in direction of force (1) There is no movement in the vertical direction [or equiv.] (1) I. Work done = $200 (1) \times 2000 = 4.0 \times 10^5 \text{ J ((unit))}$ [or 400 kJ] (1) II. $P = \frac{4 \times 10^5 (\text{ecf})}{30 \times 60(1)}$ (1) [NB or use of $P = Fv$]	3 2	
	(c)		Attempt at resultant force calculation (1) $\Sigma F = 261 \text{ (ecf)} - 200 \text{ (1) [=61 N] [correct sign needed]}$ $a = \frac{61}{40} [=1.53 \text{ m s}^{-2}] \text{ [no ecf on use of 261 N] (1)}$	3	
				[12]	
2	(a)		Ammeter shown in series with bulb [or in series with bulb/voltmeter parallel combination] (1) Voltmeter shown in parallel with bulb [or across bulb/ammeter series combination] (1)	2	
	(b)	(i) (ii)	2.0 A 6.0 Ω	1 1	
	(c)		Either: $\frac{1}{18} + \frac{1}{6(\text{ecf})} = \frac{1}{R_{\parallel}} (1); R_{\text{par}} = 4.5 \Omega (1)$ Subst into pot div equations: $12 = \frac{4.5}{4.5 + R} \times 16 (1)$ $R = 1.5 \Omega (1)$ Or: $I_{18\Omega} = \frac{12}{18} [=0.67 \text{ A}] (1); \text{ So } I_{\text{total}} = 2.67 \text{ A [ecf from } (a)](1)$		
	(d)		$R = \frac{4(1)}{2.67(\text{ecf})} = 1.5 \Omega (1)$ Graph shown with positive gradient and linear through the origin for	4	
	(4)		low values (1) and smoothly reducing gradient for higher values [NB – not negative gradients at end](1)	2	
				[10]	

Question		on	Marking details		Marks Available
3	(a)		Moment [or torque / couple]		1
	(b)	(i) (ii)	$4.0 \times 0.40 = \Delta \times 0.20$ (1) [or by imp Wt of $\Delta = 8.0$ N (1) 12.0 N (1)[ecf = $4.0 + (b)$ (i)]	l.]	2
	(c)	(i) (ii)	$12(\operatorname{ecf})x (1) = 9.0(0.8 - x)(1)$ $x = 0.34 \text{ m (1)}$ $x \text{ needs to stay the same (1) because moment] at C are unchanged (1)}$ $N.B. \text{ Ecf from } (b)(ii)$	e force/weight [and hence the	3
			N.B. ECI HOIII (<i>0)</i> (II)		[9]
4	(a)	(i)	[gradient =] $\frac{v-u}{t}$ (1); represents acc		2
		(ii)			2
			$x = ut + \frac{1}{2}t(ut) \text{ shown (1)}$ [or other convincing working]	$x = \frac{1}{2}(u + u + at)t(1)$	2
	(b)		$x = ut + \frac{1}{2}at^{2}$ used with $u = 0$ (1) x = 36 m (1) $v = u + at$ used with $u = 0$ (1) [or v^{2}	$= u^2 + 2ax \text{ used with } u = 0$	2
			$v = 6 \text{ m s}^{-1} (1)$	u + 2ax used with u = 0]	2
	(c)		$x = \frac{1}{2}(u+v)t \text{ used } (1)$ $t = 40 \text{ s } (1) \text{ [Use of } u = 0 \text{ seen } \to 1 \text{ n}$ $\text{Use of } a = \frac{v-u}{t} (1) \text{ [Use of } u = 0 \text{ s}$ $a = [-] 0.15 \text{ m s}^{-2} (1)$	mark penalty] een → 1 mark penalty]	2
	(d)		Axes [inc + and – acceleration; time Horizontal line from 0 s at 0.5 m s ⁻¹ Horizontal line from at – 0.15 m s ⁻² Change of a at 12 s and cease at 52	² (1) [ecf from <i>(c)</i> (ii)] (1)	4
	(e)	(i) (ii)	157 N (157(ecf) 2) [= 47 NI (1) [or on	sivolent weathing 1	1
			$\left(\frac{157(\text{ecf})}{4(1)} + 8\right) [= 47 \text{ N}] (1) \text{ [or equ}$ NB Use of factor of 2 \rightarrow 0 marks	iivaient working.]	2
			The object fueror of 2 7 of marks		[21]

Question		on	Marking details	Marks Available
5	(a)		Rearrangement of $R = \frac{\rho l}{A}$ seen [or implied by 2 nd mark]. (1) $\frac{\Omega \text{ m}^2}{\text{seen (1)}}$	
			m Accept equivalent working in terms of showing homogeneity: 1 st mark insertion of units in equation; 2 nd mark explicit conclusion	2
	(b)	(i)	Convincing demonstration, e.g. $\pi \left(\frac{1.3 \times 10^{-3}}{2}\right)^2$ seen	1
		(ii)	[Ans = 1.327 × 10 ⁻⁹ m ²] $R = \frac{1.7 \times 10^{-8} \times 20}{1.3 \text{ (or } 1.33) \times 10^{-6}} [=0.26 \Omega]$	1
		(iii)	$\frac{0.26(\text{ecf})}{14} [\text{or correct use of parallel formula}] (1) = 0.019 \ \Omega (1)$ If resistivity formula used, 1 st mark for $A \times 14$. Use of $P = I^2R$ [or equiv, e.g. $P = IV$ and $V = IR$] (1)	2
			$\left(\frac{9 \times 0.26}{9 \times 0.19}\right) [\text{NB 9 not 3}] \text{ or } \left(\frac{I^2 R}{I^2 R/14}\right) (1)$	3
		(v)	Answer in range 13 – 14.5 : 1 (1) I. Less power loss in whole / larger cable [for a given current] / or smaller resistance [accept: if 1 strand breaks there will still be continuity.] II. Many flowible [or loss many to great with report handing] /if 1	1
			II. More flexible [or less prone to snap with repeat bending] /if 1 strand breaks there will still be continuity [accept only once]	1
	(c)	(i) (ii)		1
			$v = \frac{I}{nAe}$ or $3.0 = 7.7 \times 10^{28} (\text{ecf}) \times 1.3 \times 10^{-6} \times 1.6 \times 10^{-19} v(1)$	
		(iii)	[NB No ecf on n if 2.0×10^{24} used] $v = 1.9 \times 10^{-4} \text{ m s}^{-1}$ (1) I, n and e do not change (1)	2
			A increased by \times 14 (1) v reduced by same ration \rightarrow 1.36 [1.4] \times 10 ⁻⁵ m s ⁻¹ .(1)	3
				[17]

Question		n	Marking details	Marks Available
6	(a)	(i)	V is the terminal p.d. – or clear explanation in energy terms: energy per coulomb delivered to external circuit / [NB "per coulomb" / "per unit charge" required on one of (i) and (ii) if energy	
			explanation given]	1
		(ii)	P.D. across the internal resistance [accept lost volts – "bod"] / energy per coulomb lost / dissipated in the internal resistance / cell	1
	(b)	(i)	2.4 V	1
		(ii)	0.4Ω [allow e.c.f. from $(b)(i)$]	1
		(iii)	e.g. "Drains" the cell <u>quickly</u> , Cell gets hot	1
	(c)		Correct use of $I = \frac{E}{R_{\text{Tot}}}$	
			I = 1.0 A	2
	(d)		Trial and error acceptable: Use of $1 \times, 2 \times, 3 \times$ (1); corresponding total resistance (1); use of $\frac{V}{R}$ (1) leading to 5 cells (1)	
			Nice answer: Subst in $I = \frac{E}{R+r}$: $3.0 = \frac{2.4n}{2.0+0.4n}$ [ecf on $n \times 2$](1)	
			Re-arrangement: $6.0 + 1.2n = 2.4n \rightarrow n = 5$	
			Marking points with analytical answer: $n \times 2.4$ (1) Use of total resistance = $2.0 + 0.4 n$ (1)	
			Application of $I = \frac{V}{R}(1)$; $n = 5(1)$	4
				[11]