\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks Available \\
\hline 1 \& \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Use of \(\cos 40^{\circ}\) [or \(\sin 50^{\circ}\)] (1) [or by impl.]
\[
\left(\frac{200}{\cos 40}\right)(1)=260 \mathrm{~N}[\text { subst or ans }]
\] \\
Work done \(=\) Force \(\times\) distance (1) in direction of force (1) \\
There is no movement in the vertical direction [or equiv.] (1) \\
I. Work done \(=200(1) \times 2000=4.0 \times 10^{5} \mathrm{~J}((\) unit \())\) [or 400 kJ\(](1)\) \\
II. \(P=\frac{4 \times 10^{5}(\mathrm{ecf})}{30 \times 60(1)}(1) \quad[\mathrm{NB}\) or use of \(P=F v\)] \\
Attempt at resultant force calculation (1) \\
\(\Sigma F=261\) (ecf) - \(200(1)[=61 \mathrm{~N}]\) [correct sign needed] \\
\(a=\frac{61}{40}\left[=1.53 \mathrm{~m} \mathrm{~s}^{-2}\right][\) no ecf on use of 261 N\(]\) (1)
\end{tabular} \& \begin{tabular}{l}
3
2 \\
2 \\
3 \\
[12]
\end{tabular} \\
\hline 2 \& (a)
(b)
(c)

(\& \begin{tabular}{l}
(i) \\
(ii)

 \&

Ammeter shown in series with bulb [or in series with bulb/voltmeter parallel combination] (1) \\
Voltmeter shown in parallel with bulb [or across bulb/ammeter series combination] (1) \\
2.0 A \\
6.0Ω \\
Either: $\frac{1}{18}+\frac{1}{6(\mathrm{ecf})}=\frac{1}{R_{\|}}(1) ; R_{\mathrm{par}}=4.5 \Omega(1)$ \\
Subst into pot div equations: $12=\frac{4.5}{4.5+R} \times 16$ (1)

$$
R=1.5 \Omega(1)
$$ \\

Or: $\quad I_{18 \Omega}=\frac{12}{18}[=0.67 \mathrm{~A}](1) ;$ So $I_{\text {total }}=2.67 \mathrm{~A}[\operatorname{ecf}$ from $(a)](1)$ $R=\frac{4(1)}{2.67(\mathrm{ecf})}=1.5 \Omega(1)$ \\
Graph shown with positive gradient and linear through the origin for low values (1) and smoothly reducing gradient for higher values [NB - not negative gradients at end](1)

 \&

2 \\
1
1 \\
4 \\
2 \\
[10]
\end{tabular} \\

\hline
\end{tabular}

Question			Marking details	Marks Available
3	(a) (b) (c)	(i) (ii) (i) (ii)	Moment [or torque / couple] $\begin{aligned} & 4.0 \times 0.40=\Delta \times 0.20(1) \text { [or by impl.] } \\ & \text { Wt of } \Delta=8.0 \mathrm{~N}(1) \\ & 12.0 \mathrm{~N}(1)[\mathrm{ecf}=4.0+(b)(\mathrm{i})] \\ & 12(\mathrm{ecf}) x(1)=9.0(0.8-x)(1) \\ & x=0.34 \mathrm{~m}(1) \end{aligned}$ x needs to stay the same (1) because force/weight [and hence the moment] at C are unchanged (1) N.B. Ecf from (b)(ii)	1 2 1 3 2 $[9]$
4	(a)	(i) (ii) (iii)	$\begin{aligned} & \text { [gradient } \left.=] \frac{v-u}{t}(1) \text {; represents acceleration [accept: } a\right] \text { (1) } \\ & \text { [Area }=] u t+\frac{1}{2} t(v-u) \text { or } \frac{1}{2}(u+v) t(1) \\ & \text { Represents displacement [accept: distance [travelled in a given } \\ & \text { direction]] (1) } \\ & \text { Either: } \\ & v=u+a t(1) \\ & x=u t+1 / 2 t u t) \text { shown (1) } \\ & \text { [or other convincing working] } \end{aligned} \begin{aligned} & \text { Or: } \\ & v=u+a t(1) \\ & \text { } \begin{array}{l} \text { [or other convincing working] } \end{array} \end{aligned}$	2 2 2
	(b)	(i) (ii)	$\begin{aligned} & x=u t+1 / 2 a t^{2} \text { used with } u=0(1) \\ & x=36 \mathrm{~m}(1) \\ & v=u+a t \text { used with } u=0(1)\left[\text { or } v^{2}=u^{2}+2 a x \text { used with } u=0\right] \\ & v=6 \mathrm{~m} \mathrm{~s}^{-1}(1) \end{aligned}$	2 2
	(c)	(i) (ii)	$\begin{aligned} & x=\frac{1}{2}(u+v) t \text { used (1) } \\ & t=40 \mathrm{~s} \mathrm{(1)} \mathrm{[Use} \mathrm{of} u=0 \text { seen } \rightarrow 1 \text { mark penalty] } \\ & \text { Use of } a=\frac{v-u}{t}(1) \text { [Use of } u=0 \text { seen } \rightarrow 1 \text { mark penalty] } \\ & a=[-] 0.15 \mathrm{~m} \mathrm{~s}^{-2}(1) \end{aligned}$	2 2
	(d)		Axes [inc + and - acceleration; time; labelling] (1) Horizontal line from 0 s at $0.5 \mathrm{~m} \mathrm{~s}^{-2}(1)$ Horizontal line from at $-0.15 \mathrm{~m} \mathrm{~s}^{-2}$ [ecf from (c)(ii)] (1) Change of a at 12 s and cease at 52 s (1)	4
	(e)	(i) (ii)	$\left(\frac{157(\mathrm{ecf})}{4(1)}+8\right)[=47 \mathrm{~N}]$ (1) [or equivalent working.] NB Use of factor of $2 \rightarrow 0$ marks	1 2 [21]

Question			Marking details	Marks Available
6	(a)	(i)	V is the terminal p.d. - or clear explanation in energy terms: energy per coulomb delivered to external circuit / [NB "per coulomb" / "per unit charge" required on one of (i) and (ii) if energy explanation given] P.D. across the internal resistance [accept lost volts - "bod"] / energy per coulomb lost / dissipated in the internal resistance / cell	1
	(b)	(i) (ii) (iii)	$\begin{aligned} & 2.4 \mathrm{~V} \\ & 0.4 \Omega \text { [allow e.c.f. from (b)(i)] } \\ & \text { e.g. "Drains" the cell quickly, Cell gets hot } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
	(c)		Correct use of $I=\frac{E}{R_{\text {Tot }}}$ $I=1.0 \mathrm{~A}$	2
	(d)		Trial and error acceptable: Use of $1 \times, 2 \times, 3 \times \ldots$ (1); corresponding total resistance (1); use of $\frac{V}{R}(1)$ leading to 5 cells (1)	
			Nice answer: Subst in $I=\frac{E}{R+r}: 3.0=\frac{2.4 n}{2.0+0.4 n}[\operatorname{ecf}$ on $n \times 2](1)$ Re-arrangement: $6.0+1.2 n=2.4 n \rightarrow n=5$ Marking points with analytical answer: $n \times 2.4$ (1) Use of total resistance $=2.0+0.4 n(1)$ Application of $I=\frac{V}{R}(1) ; n=5$ (1)	4
				[11]

